US009275058B2

a2 United States Patent

Wehrman et al.

US 9,275,058 B2
*Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

(58)

RELOCATION OF METADATA SERVER
WITH OUTSTANDING DMAPI REQUESTS

Inventors: Geoffrey Wehrman, Minneapolis, MN
(US); Dean Roehrich, Eagan, MN (US)

Assignee: Silicon Graphics International Corp.,
Mllpitas, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/220,257

Filed: Aug. 29, 2011

Prior Publication Data
US 2012/0059854 A1 Mar. 8,2012

Related U.S. Application Data

Continuation of application No. 10/620,387, filed on
Jul. 17, 2003, now Pat. No. 8,010,558, which is a
continuation-in-part of application No. 10/162,258,
filed on Jun. 5, 2002, now Pat. No. 6,950,833.

Provisional application No. 60/296,046, filed on Jun.

5,2001.

Int. Cl.

GO6F 7/00 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC o GO6F 17/30067 (2013.01)

Field of Classification Search
CPC GOG6F 17/30253; GOG6F 17/30707,
GOG6F 17/30746; GOG6F 17/30787; GO6F
17/30796; GOGF 17/30522; GO6F 17/3053;
GO6F 17/30554; GOGF 17/30643; GO6K
9/00711; Y10S 707/99933

READ OPERATIONS

DMAPI_BNC READ

LOCK BEHAVIOR
HEAD

USPC 707/707, 795, 796, 828, 831; 710/1-5;
711/6, 203; 715/771, 773

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,206,455 A * 4/1993 Williams F24B 3/113
102/201

5,440,727 A 8/1995 Bhide et al.

5,611,050 A 3/1997 Theimer et al.

5,668,958 A 9/1997 Bendert et al.

5,774,689 A 6/1998 Curtis et al.

5,778,387 A 7/1998 Wilkerson

5,786,814 A 7/1998 Moran et al.

5,859,966 A 1/1999 Hayman et al.

(Continued)
OTHER PUBLICATIONS

Beck, Decision on Appeal, U.S. Appl. No. 10/345,357, Jan. 30, 2009,
9 pgs.
(Continued)

Primary Examiner — Jeftrey A Burke

Assistant Examiner — Linh Black

(74) Attorney, Agent, or Firm — Lewis Roca Rothgerber
Christie LLP

(57) ABSTRACT

A cluster of computer system nodes share direct read/write
access to storage devices via a storage area network using a
cluster filesystem and operating system implementing
DMAPI. Threads executing on a metadata client know when
aDMAPI event is required, and generate the DMAPI event on
their own initiative when necessary. A metadata server main-
tains DMAPI queues. If the metadata server relocates to
another host, the DMAPI events in the DMAPI queues are
moved transparently to users.

17 Claims, 16 Drawing Sheets

412

RETURN

US 9,275,058 B2

Page 2

(56)

5,878,421
5,907,837
5,917,998
5,918,229
5,987,566
5,999,712
6,014,669
6,014,699
6,026,452

6,032,216
6,044,367
6,047,294
6,047,323

6,047,332
6,058,400
6,067,545
6,073,132
6,073,218
6,088,693
6,094,654
6,101,508
6,105,026
6,105,132
6,111,893
6,151,588
6,151,688

6,157,635
6,182,139
6,185,601
6,230,185
6,275,990

6,279,032
6,289,462
6,298,425
6,314,408
6,324,581
6,341,339
6,349,343
6,353,837
6,363,495
6,370,529
6,389,420
6,389,451
6,449,641
6,453,354
6,453,426
6,463,573
6,466,978
6,473,775
6,487,561
6,490,631
6,493,804
6,560,234
6,594,751
6,636,499
6,640,233
6,651,096
6,654,912
6,674,713
6,681,389
6,697,846
6,711,559
6,725,264
6,732,124
6,732,125
6,751,616
6,754,181
6,766,430
6,785,892
6,799,189
6,799,258

References Cited

U.S. PATENT DOCUMENTS

A 3/1999
A 5/1999
A 6/1999
A 6/1999
A 11/1999
A 12/1999
A 1/2000
A 1/2000
A * 2/2000
A 2/2000
A * 3/2000
A 4/2000
A * 4/2000
A 4/2000
A 5/2000
A * 5/2000
A 6/2000
A 6/2000
A 7/2000
A 7/2000
A * 82000
A 8/2000
A 8/2000
A 8/2000
A 11/2000
A * 11/2000
A 12/2000
Bl 1/2001
B1* 2/2001
Bl 5/2001
Bl1* 82001
Bl 8/2001
Bl 9/2001
Bl 10/2001
Bl 11/2001
Bl 11/2001
Bl 1/2002
Bl 2/2002
Bl 3/2002
Bl 3/2002
Bl 4/2002
Bl 5/2002
Bl 5/2002
Bl 9/2002
B1* 9/2002
Bl 9/2002
Bl 10/2002
Bl 10/2002
Bl 10/2002
Bl 11/2002
Bl 12/2002
Bl * 12/2002
Bl 5/2003
B1* 7/2003
Bl 10/2003
Bl 10/2003
Bl 11/2003
Bl 11/2003
Bl 1/2004
Bl 1/2004
BL* 2/2004
Bl 3/2004
Bl 4/2004
Bl 5/2004
Bl 5/2004
Bl 6/2004
Bl 6/2004
B2* 7/2004
Bl 8/2004
B2 9/2004
Bl 9/2004

Ferrel et al.

Ferrel et al.

Cabrera et al.

Davis et al.

Vishlitzky et al.

Moiin et al.

Slaughter et al.

Ratcliff et al.

Pitts oooveeereie GO6F 12/0813
709/203

Schmuck et al.

Wolff 707/704

Krausecccooueve GOG6F 9/4426
709/201

Viswanathan et al.

Slaughter

Wolff

Gehman

DeKoning et al.

Van Huben et al.

Van Huben et al.

WOISE o 709/223

Kruglikov et al.

Fritch et al.

Volftsun et al.

Tozzoli et al.

Wipfelcccocevneenn GO6F 11/008
709/224

Wang et al.

Brendel

WOISE o 709/203

Salas et al.

Dappercccccevenne GO6F 17/14

348/E7.07

Short et al.

McNabb et al.

Whitaker et al.

Salas et al.

Xu et al.

Kontothanassis et al.

Foody et al.

Blumenau

MacKenzie et al.

Kruglikov et al.

Vahalia et al.

Hart

Moiin et al.

Jiang et al.ccccoeeene 709/229

Gamache et al.

Maddalozzo, Ir. et al.

Mukherjee et al.

Kusters et al.

Ofek et al.

Teich et al.

Soltis et al.coeevvrene 711/152

Ben-Michael et al.

Leiventcoccoovevenrne, 711/209

Dowling

Lewis et al.

Gai et al.

Viswanathan et al.

Berget al.

Engel

SOItES v 709/217

Kogota et al.

Christy

Koseki et al.

Autrey et al.

Chan

Elliott et al.

Arakawa et al. 711/165

Miller et al.

Huxoll

Linde

6,804,719
6,819,918
6,829,610
6,832,330
6,868,417
6,873,627
6,883,170
6,904,544
6,917,626
6,947,940
6,948,001
6,950,833
6,952,688
6,954,437
6,957,439
6,959,310
6,965,569
6,965,934
6,973,455
6,976,060
6,981,005
6,983,456
7,006,614
7,043,663
7,062,563
7,072,984
7,088,995
7,103,664
7,103,914
7,127,633
7,133,846
7,139,925
7,145,898
7,159,125
7,171,121
7,180,909
7,185,017
7,191,433
7,200,144
7,203,663
7,209,551
7,225,249
7,225,276
7,240,100
7,254,645
7,284,191
7,292,567
7,315,903
7,337,241
7,373,422
7,394,761
7,451,199
7,487,509
7,559,052
7,649,908
8,010,558
2002/0004857
2002/0143801
2002/0161855
2002/0165979
2002/0174369
2003/0028514
2003/0031176
2003/0065760
2003/0078946
2003/0079155
2003/0177187
2003/0177387
2003/0187861
2003/0208750
2003/0217096
2004/0001501
2004/0022237
2004/0030951
2004/0088297
2004/0122917
2004/0153841
2004/0187020
2004/0210656

10/2004
11/2004
12/2004
12/2004
3/2005
3/2005
4/2005
6/2005
7/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
10/2005
11/2005
11/2005
12/2005
12/2005
12/2005
1/2006
2/2006
5/2006
6/2006
7/2006
8/2006
9/2006
9/2006
10/2006
11/2006
11/2006
12/2006
1/2007
1/2007
2/2007
2/2007
3/2007
4/2007
4/2007
4/2007
5/2007
5/2007
7/2007
8/2007
10/2007
11/2007
1/2008
2/2008
5/2008
7/2008
11/2008
2/2009
7/2009
1/2010
8/2011
1/2002
10/2002
10/2002
11/2002
11/2002
2/2003
2/2003
4/2003
4/2003
4/2003
9/2003
9/2003
10/2003
11/2003
11/2003
1/2004
2/2004
2/2004
5/2004
6/2004
8/2004
9/2004
10/2004

Cabrera et al.
Chin et al.
Hickman et al.
Boudrie et al.
Kazar et al.
Miller et al.
Garcia

DeRolf et al.
Duvvury
Anderson et al. 707/613
Bradley

Costello et al.
Goldman et al.
Sylvest et al.
Lewallen

Eshel et al.
Carolan et al.
Reynolds et al.
Vahalia et al.
Manczak et al.
Cabrera et al.
Poznanovic et al.
Feinberg et al.
Pittelkow et al.
Lewis et al.
Polonsky et al.
Rao

Novaes et al.
Focke et al.
Olson et al.
Ginter et al.
Dinker et al.
Elliott

Beadles et al.
Skarica et al.
Achler

Cauvin et al.
Narad et al.
Terrell et al.
Buisman et al.
Schroeder et al.
Barry et al.
Garnett et al.
Wein et al.

Nishi
Grefenstette et al.
Terrell et al.
Bowden
Boucher et al.
Paul et al.

Foster et al.
Kandefer et al.
Hugly et al.
Kalia et al.
Schwalb
‘Wehrman
Arakawa et al. 710/1
Okamoto et al.
Manczak et al.
Vincent
Miyazaki et al.
Lord et al.

SIM e 370/392
Casper et al.
Costello et al.
Kingsbury
Levine et al.
Osterwalder et al.
Lubbers et al. 707/102
Tapper et al.
McKelvie et al.
Delveaux et al.
Elliott et al.
Armangau
Coates et al.
Menonet al. 709/219
Beck

Laeerssen et al.
Beck et al.

US 9,275,058 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2004/0215830 Al
2004/0249904 Al
2004/0250113 Al
2005/0268223 Al
2006/0004765 Al
2006/0148495 Al

OTHER PUBLICATIONS

10/2004 Shenfield

12/2004 Moore et al.

12/2004 Beck

12/2005 Hanson et al.
1/2006 Anderson et al.
7/2006 Wilson

Beck, Examiner’s Answer, U.S. Appl. No. 10/345,357, Oct. 9, 2007,

19 pgs.

Beck, Notice of Allowance, U.S. Appl. No. 12/648,501, Nov. 28,
2011, 10 pgs.

Beck, Notice of Allowability, U.S. Appl. No. 12/903,096, Feb. 10,
2012, 16 pgs.

Beck, Notice of Allowability, U.S. Appl. No. 10/345,357, Feb. 3,
2009, 6 pgs.

Beck, Notice of Allowance, U.S. Appl. No. 10/414,239, Aug. 12,
2009, 6 pgs.

Beck, Notice of Allowance, U.S. Appl. No. 11/785,255, Mar. 30,
2011, 8 pgs.

Beck, Notice of Allowance, U.S. Appl. No. 11/785,256, Jun. 4, 2010,
6 pgs.

Beck, Notice of Allowance, U.S. Appl. No. 12/903,096, Dec. 7,2011,
17 pgs.

Beck, Office Action, U.S. Appl. No. 10/345,357, Apr. 7, 2006, 9 pgs.
Beck, Office Action, U.S. Appl. No. 10/345,357, Oct. 20, 2006, 14
pgs.

Beck, Office Action, U.S. Appl. No. 10/345,357, Jul. 27, 2005, 8 pgs.
Beck, Office Action, U.S. Appl. No. 10/414,239, Mar. 3, 2008, 10
pgs.

Beck, Office Action, U.S. Appl. No. 10/414,239, Aug. 8, 2007, 8 pgs.
Beck, Office Action, U.S. Appl. No. 10/414,239, Aug. 21, 2008, 6
pgs.

Beck, Office Action, U.S. Appl. No. 10/414,239, Jan. 25,2007, 9 pgs.
Beck, Office Action, U.S. Appl. No. 10/414,239, Feb. 27, 2009, 9 pgs.
Beck, Office Action, U.S. Appl. No. 10/414,239, May 31, 2006, 7
pgs.

Beck, Office Action, U.S. Appl. No. 11/785,255, Apr. 16, 2009, 8 pgs.
Beck, Office Action, U.S. Appl. No. 11/785,255, Sep. 17, 2010, 15
pgs.

Beck, Office Action, U.S. Appl. No. 11/785,255, Nov. 24, 2009, 10
pgs.

Beck, Office Action, U.S. Appl. No. 11/785,255, Mar. 30, 2010, 14
pgs.

Beck, Office Action, U.S. Appl. No. 11/785,256, Sep. 16, 2009, 5 pgs.
Beck, Office Action, U.S. Appl. No. 11/785,256, Mar. 24, 2010, 7
pgs.

Beck, Office Action, U.S. Appl. No. 12/903,096, Jun. 24, 2011, 16
pgs.

Cruciani, Notice of Allowance, U.S. Appl. No. 10/414,245, Mar. 23,
2010, 11 pgs.

Cruciani, Office Action, U.S. Appl. No. 10/414,245, Sep. 2, 2009, 8
pgs.

Cruciani, Office Action, U.S. Appl. No. 10/414,245, Dec. 18, 2008, 7
pgs.

Cruciani, Office Action, U.S. Appl. No. 10/414,245, Aug. 13, 2007,
10 pgs.

Cruciani, Office Action, U.S. Appl. No. 10/414,245, Mar. 18, 2008, 9
pgs.

Cruciani, Office Action, U.S. Appl. No. 10/414,245, Dec. 21, 2006, 7
pgs.

Eisenhauer, Event Services for High Performance Computing, 9th
International Symposium on High Performance Distributed Comput-
ing, Aug. 1-4, 2000, 113-130 pgs.

Eisenhauer, Native Data Representation, an Efficient Wire Format for
High-Performance Distributed Computing, IEEE Transactions on
Parallel and Distributed Systems, V13, 112, Dec. 2002, 1234-1246
pgs.

Falkner, The Provision of Relocation Transparency Through a For-
malized Naming System in a Distributed Mobile Object System, Oct.
3,2000, 1-197 pgs.

Krueger, Small Computer Systems Interface Protocol Over the
Internet (iSCSI) Requirements and Design Considerations, Jul. 2002,
26 pgs.

McCloghrie, Managed Objects for Controlling the Collection and
Storage of Accounting Information for Connection-Oriented Net-
works, Feb. 1999, 29 pgs.

Moore, Notice of Allowance, U.S. Appl. No. 10/414,236, Jul. 2,
2009, 7 pgs.

Moore, Notice of Allowance, U.S. Appl. No. 12/615,930, Aug. 10,
2012, 17 pgs.

Moore, Office Action, U.S. Appl. No. 10/414,236, Dec. 2, 2008, 10
pgs.

Moore, Office Action, U.S. Appl. No. 10/414,236, Oct. 2, 2007, 8

pgs.

Moore, Office Action, U.S. Appl. No. 10/414,236, Apr. 10, 2007, 7
pgs.

Moore, Office Action, U.S. Appl. No. 12/615,930, Jan. 19, 2011, 11
pgs.

Moore, Office Action, U.S. Appl. No. 12/615,930, Jul. 28, 2011, 13
pgs.

Moore, Office Action, U.S. Appl. No. 12/615,930, Nov. 29, 2011, 7
pgs.

Pazel, Neptune: A Dynamic Resource Allocation and Planning Sys-
tem for a Cluster Computing Ultility, 2002, 8 pgs.

Pinheiro, S-DSM for Heterogeneous Machine Architectures, U.
Rochester, Apr. 2000, 7 pgs.

Sjoberg, Real-time Transport Protocol (RIP) Payload Format and
File Storage Format for the Adaptive Multi-Rate (AMR) and Adap-
tive Multi-Rate Wideband (AMR-WB) Audio Codecs, Jun. 2002, 49
pgs.

Tanenbaum, Structured Computer Organization, 3rd Ed., Prentice
Hall, 1990, 43-44 pgs.

Theimer, Overlook: Scalable Name Service on an Overlay Network,
2002, 33 pgs.

Wehrman, Notice of Allowance, U.S. Appl. No. 10/620,387, Apr. 28,
2011, 7 pgs.

Wehrman, Office Action, U.S. Appl. No. 10/620,387, Jan. 2, 2008, 6
pgs.

Wehrman, Office Action, U.S. Appl. No. 10/620,387, Aug. 4, 2006, 9
pgs.

Wehrman, Office Action, U.S. Appl. No. 10/620,387, Jun. 13, 2007,
9 pgs.

Wehrman, Office Action, U.S. Appl. No. 10/620,387, May 13, 2010,
18 pgs.

Wehrman, Office Action, U.S. Appl. No. 10/620,387, Jun. 19, 2008,
9 pgs.

Wehrman, Office Action, U.S. Appl. No. 10/620,387, Jan. 23, 2009,
10 pgs.

Wehrman, Office Action, U.S. Appl. No. 10/620,387, Jan. 24, 2006,
7 pgs.

Wehrman, Office Action, U.S. Appl. No. 10/620,387, Sep. 30, 2009,
18 pgs.

Wehrman, Office Action, U.S. Appl. No. 10/620,387, Sep. 30, 2010,
17 pgs.

Beck, Office Action, U.S. Appl. No. 12/648,501, Jul. 14, 2011, 7 pgs.
Beck, Office Action, U.S. Appl. No. 13/442,037, Nov. 20, 2012, 16
pgs.

Beck, Office Action, U.S. Appl. No. 13/438,304, Jan. 24, 2013, 10
pgs.

Brandt et al. Efficient Metadata Management in Large Distributed
Storage System, Apr. 2003, pp. 290-298.

* cited by examiner

U.S. Patent Mar. 1, 2016 Sheet 1 of 16 US 9,275,058 B2

Value-Added
SAN Services o Llayer3
. Distributed Shared Filesystem
Interoperability
Testing
. Layer 2
Integration SAN Management
Support
_ Layer 1
Professional Hardware and Software Infrastructure
Services
FIG. 1
34
L : |
36 22a 22b 22¢ 22d 24a 24b 26
N \ N / / / Ve
MPX {RIX IRIX IRIX IRIX Solaris Solaris NT
L R ; |
|| e = | (4
| e e e e — e] L ‘
e e e e o e o e e et e e e —— L — e e
32-1 321 321 32-1 327 32 32
30 Fibre Channel Switch _
327 32/‘ 32/l '\32 '\32 32

'

FIG.2 38

U.S. Patent Mar. 1, 2016 Sheet 2 of 16 US 9,275,058 B2

|
{
vnode |-—42D :
46b
2 2
: Y Token Client
220~ o e
j—» Token Server
N
50
\ 4
xfs ~— §2
™34
vnode 423
223\ 463
Y 44 / :
decvn » Token Client i
1
|

FIG. 3

US 9,275,058 B2

Sheet 3 of 16

Mar. 1, 2016

U.S. Patent

Suone.ado apouA

9poul S4X

suoijelado apouA

A

8pOul UASP

egg /|

SuoneIado 8pouA

egg J

108lqo ouq1dewp

vy Ol

JoIABYS(
7Y -
ue
0IAeysq 832%
s eyg
Joineysq l«— |1 e | apoun
\
YA 5

£§

ey

US 9,275,058 B2

Sheet 4 of 16

Mar. 1, 2016

U.S. Patent

pgs |

suonelado sapouA

P9g

apoul UAP

egs

suoneJado apounA

egc /|

108[00 ouqidewp

gy Ol

J0IABY8(

PYS

\ A

J0IABY(

v

Byq

/

X

Ureyd
joineysg

peay

Joineyaq

*

9POUA

€5

\

P,

4

U.S. Patent Mar. 1, 2016 Sheet 5 of 16 US 9,275,058 B2
46a 50 46¢
N N\ /
Token Client Token Server Token Client
A A f
62 ~ 68 _~80 |_~76
g 74—

v 64 Y 70 72 Y
Metadata Client |, .| Metadata Server / »| Metadata Client
decvn VA dsvn - C devn
’ 66 ’ 78 N
443 48 44c¢
FIG. 5
22\t‘) 2/23
88~ Hswm User Application |-—92
A I 3

‘ Y
90~ pmari
! 34 Y
48— Metadata Server [N » Metadata Client |-—46a
A F \
28
32(& 30)

FIG. 6

32(& 30)

U.S. Patent

94~

I/Q Requsest

1

96 ~—

Acquier
DMAPI Token

Is
DMAPI Event
Set?

No

4

146

Perform I/0

Yes

{

148 —

Release
DMAPI Token

Mar. 1, 2016 Sheet 6 of 16 US 9,275,058 B2
Metadata | Metadata
Client : Server
22a 1 22
|
|
"
|
|
{
126 128 |
N / :
Look up Send 1 Recei
Metadata ~ Message 1 M:g::;ee -~ 130
Server to Server : &
t
: Send DMAPI | ~132
' N Event
—————-
| !
{ Queue DMAPI
! Event ™~-136
' i
t
Receive i Forward Process DMAPI
Reply : Reply Event 138
/ | N
142 { 140
{

3
N

US 9,275,058 B2

Sheet 7 of 16

Mar. 1, 2016

U.S. Patent

7
\

ASBIA Juang
IdVYING
FE I
aNBLIoY

4

0ct
/

2hi~d

W3l o1
usyg] Juey

SiqelIeAY
UsHo|

&

k4

NSE 1U8AT
IdYING
[2907 21epdn

Ua0L 1dYNG

asned DuR

{shusdo]
3%0A3Y

8§ DIA
|
glL I gl
N
ysep weng | | | seiyiuea3
IdYIAG LIM L IdYING Yl
fiday usyo) " fidey usio}
PIRMIC] | ahis00y
! .
!
]
1
I
|
|
|
15onbsy I B IVETS
usor " 0} 1sanbay
31309y | ool pusg
4 _ 3
90} ” 3
1
]
S ~ A——
e | e
prag b e
GepEsl | EEpEE

Janag
PIRDRIAIN
an oo

\
201

¥

WRI9 PR

~30 1

7" DBIIRY USY0)

 §

IdYWQ
R

001

ugno)
IdYINQ 1senDay

- 86

U.S. Patent Mar. 1, 2016 Sheet 8 of 16 US 9,275,058 B2

160~ XvM Logical Volume

162~ XvM Logical Mirror

170 - ' = 164
N /
' XVM Logical Mirror XVM Logical
Interior Mirror Concatenation
179 | XM Logical Stripe | XVM Logical Stripe |~_174 166 168

176 178 180 182 184 186

FIG. 9

US 9,275,058 B2

Sheet 9 of 16

Mar. 1, 2016

U.S. Patent

0l DIH

A1an0oay
Sleiliv]

4%

30813

Yoy
+ MEIDIM
UMOPINYS

\
9l¢

18pes] e

%
902

pesQ

\
14%4

JusosEN

b0z

¢0¢-

18MO0] |04

\
0ke

U.S. Patent Mar. 1, 2016 Sheet 10 of 16 US 9,275,058 B2

CMS: CORPSE

Cell Membership Services

Message Transport

222 Node Failure

FIG. 11

| i
| {
| |
1 |
| {
| 1
i 1
24 Freeze Message ! !
224~ Channels : 228 :
v [/ :
|
226~ Notify CMS | BlockNewNodes |
i From Joining i
1 1
| 230 {
' t /7 :
|
i Initiate Membership i
: Protocol :
i |
{ (
{) [
(Membership 1
: Delivery :
1 N 1
' 232 |
: Subsystem :
{ Notification 1
I 1
1 N 1
, t 234 1
, A { 1
ap Flush Credentials I Initate Common I Message Interrupt
236 From Failed Node : "1 Object Recovery : and Wait 240
i N I v
[{
{ 238 i KORE ~—-242
{ 1
1 1 i
: : WP/XVM ~— 244
{ ! ‘
| 1
l | ;
: 250 : Filesystem ~— 246
. N . !
| Allow New | Close Message |
:, Nodes to Join : Channels 248
| 1 '
1 (
! |
i {
1 t

U.S. Patent

Metadata Server/Client

Mar. 1, 2016

Sheet 11 of 16

CORPSE Leader

US 9,275,058 B2

Elected Server

278
/

Reconstruct
Callouts

|
l
i
Beqi |
| 264
' /
| _
262~ Elect Leader > tnitialize
1
} i
Message :
266 ~_ Interrupt, Hold ;
Create Locks :
t
268 ~4 ‘ L
»1 Celldown Callouts :
Y |
[
: Message Thaw, {
| 270~ Detarget Wait, :
Release Create Locks : 274
! : £
272 Vote Callouts : > Election Callouts
l
1
276—1 Gather Callouts]
[
‘.
: Instantiate Commit- |
I
L7
i 280
i
286—1 Retarget Callouts : Retarget Commit
i
!] 2\84
I
. 988 —1 Complete Callouts |
I
{
[
|
I
[
{
I
|
[

>

290 |Yes

Instanitate
Callouts

[

FIG. 12

282

U.S. Patent

Mar. 1, 2016 Sheet 12 of 16 US 9,275,058 B2
Metadata Client(s) ! Source Metadata Server : Target Metadata
: [Server
I - |
! !
i |
: Source | ~302 :
{ | Prepare 304 ! 306
i i /
: | Send Object | ! Target
; g i . | Prepare
:_ 310 Manifest : p
{ \] #
i Source : Request
| Object
314 Lo Retarget : } <
N : ‘ | 308
Detarget +~— Detarget | ~312 |
Client ; = Clients :
[v |
:» S B R Send : Target
(| oource Bag "1 Objects (] Unbag
i {
| Y N x \
S 38 320
l:
Retarget | Retarget |
~ Client L= Clients !
AR !
324 | [
(Source End ~_ 395 i
| {
| |
| |
| l
l |

FIG. 13

U.S. Patent Mar. 1, 2016 Sheet 13 of 16 US 9,275,058 B2

443 48b 44¢

i

MDC ~(MDS)= MDC

L.ocai Access

~N

FIG. 144
NODE ADMIN SHUTDOWN METADATA SERVER UNMOUNT
/./
//
443 ///
MDC '
~

44¢
N 48¢c
~
~
~
Local Access PROTO MDS

FIG. 14B

443 48b 44c

MDC =/ﬁas\= MDC

N

44b

48¢

/" (PROTO MDS

N
~N
|
|I |

FIG. 14C

U.S. Patent Mar. 1, 2016 Sheet 14 of 16 US 9,275,058 B2

443 48b 44¢
| l
MDC | ‘ | MDC
48¢
44p

/
,/ (PROTO MDS

FIG. 14D
443 48b 44c
o n
G ! o>
44p | 48¢
FIG. 14E

44a 48b 44c

>

44h

48¢
FIG. 14F

U.S. Patent Mar. 1, 2016 Sheet 15 of 16 US 9,275,058 B2

443 44p 44c¢

FIG. 14G

443 44h

Local Access

48¢
FIG. 14H

U.S. Patent Mar. 1, 2016 Sheet 16 of 16 US 9,275,058 B2

GEAD OPERATION9

[

: 412
H /

DMAPI_BNC READ

404 > 414
d v
C VOP_READ) CALL NEXT READ
OPERATION
406
v / 416
LOCK BEHAVIOR TS
HEAD
ERROR? RETURN
410
Y f YES 418
CALL READ a
OPERATIONS UNLOGK
BEHAVIOR HEAD
s 424
UNLOCK 420 <
BEHAVIOR HEAD v

LOCK
AVAILABLE?

END
422

-

LOCK BEHAVIOR
HEAD

FIG. 15A
FIG. 15B

US 9,275,058 B2

1
RELOCATION OF METADATA SERVER
WITH OUTSTANDING DMAPI REQUESTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 10/620,387 and now U.S. Pat. No. 8,010,558, which is a
continuation-in-part of U.S. application Ser. No. 10/162,258
and now U.S. Pat. No. 6,950,833, which claims benefitto U.S.
Provisional Application No. 60/296,046, all of which are
hereby incorporated by reference herein.

TECHNICAL FIELD OF THE INVENTION

The present invention is related to data storage, and more
particularly to a system and method for accessing data within
a storage area network.

BACKGROUND OF THE INVENTION

A storage area network (SAN) provides direct, high-speed
physical connections, e.g., Fibre Channel connections,
between multiple hosts and disk storage. The emergence of
SAN technology offers the potential for multiple computer
systems to have high-speed access to shared data. However,
the software technologies that enable true data sharing are
mostly in their infancy. While SANS offer the benefits of
consolidated storage and a high-speed data network, existing
systems do not share that data as easily and quickly as directly
connected storage. Data sharing is typically accomplished
using a network filesystem such as Network File System
(NFS™ by Sun Microsystems, Inc. of Santa Clara, Calif.) or
by manually copying files using file transfer protocol (FTP),
a cumbersome and unacceptably slow process.

The challenges faced by a distributed SAN filesystem are
different from those faced by a traditional network filesystem.
For a network filesystem, all transactions are mediated and
controlled by a file server. While the same approach could be
transferred to a SAN using much the same protocols, that
would fail to eliminate the fundamental limitations of the file
server or take advantage of the true benefits of a SAN. The file
server is often a bottleneck hindering performance and is
always a single point of failure. The design challenges faced
by a shared SAN filesystem are more akin to the challenges of
traditional filesystem design combined with those of high-
availability systems.

Traditional filesystems have evolved over many years to
optimize the performance of the underlying disk pool. Data
concerning the state of the filesystem (metadata) is typically
cached in the host system’s memory to speed access to the
filesystem. This caching—essential to filesystem perfor-
mance—is the reason why systems cannot simply share data
stored in traditional filesystems. If multiple systems assume
they have control of the filesystem and cache filesystem meta-
data, they will quickly corrupt the filesystem by, for instance,
allocating the same disk space to multiple files. On the other
hand, implementing a filesystem that does not allow data
caching would provide unacceptably slow access to all nodes
in a cluster.

Systems or software for connecting multiple computer sys-
tems or nodes in a cluster to access data storage devices
connected by a SAN have become available from several
companies. EMC Corporation of Hopkington, Mass. offers
HighRoad file system software for their Celerra™ Data
Access in Real Time (DART) file server. Veritas Software of
Mountain View, Calif. offers SANPoint which provides

10

15

20

25

30

35

40

45

50

55

60

65

2

simultaneous access to storage for multiple servers with
failover and clustering logic for load balancing and recovery.
Sistina Software of Minneapolis, Minn. has a similar clus-
tered file system called Global File System™ (GFS).
Advanced Digital Information Corporation of Redmond,
Wash. has several SAN products, including Centra Vision for
sharing files across a SAN. As a result of mergers the last few
years, Hewlett-Packard Company of Palo Alto, Calif. has
more than one cluster operating system offered by their Com-
paq Computer Corporation subsidiary which use the Cluster
File System developed by Digital Equipment Corporation in
their TruCluster and OpenVMS Cluster products. However,
none of these products are known to provide direct read and
write over a Fibre Channel by any node in a cluster. What is
desired is a method of accessing data within a SAN which
provides true data sharing by allowing all SAN-attached sys-
tems direct access to the same filesystem. Furthermore, con-
ventional hierarchal storage management uses an industry
standard interface called data migration application program-
ming interface (DMAPI). However, if there are five
machines, each accessing the same file, there will be five
separate events and there is nothing tying those DMAPI
events together.

SUMMARY OF THE INVENTION

Itis an aspect of the present invention to provide relocation
of a metadata server with outstanding DMAPI requests in a
shared storage area network.

Itis yet another aspect of the present invention that DMAPI
requests are transparently reissued to a new metadata server.

At least one of the above aspects can be attained by a
method of executing operations on virtual metadata in a pro-
cess thread, including releasing a lock on the virtual metadata
if relocation of a required metadata server is underway during
execution of the operations on the virtual metadata. The vir-
tual metadata may be formed as a private data chain, and the
method also includes locking a pointer to the private data
chain prior to linking to a first item of private data in the
private data chain. Furthermore, after releasing the lock, the
thread waits for availability of a lock on the pointer to the
private data chain upon completion of relocation of the meta-
data server, before continuing with execution of operations on
the virtual metadata.

These together with other aspects and advantages which
will be subsequently apparent, reside in the details of con-
struction and operation as more fully hereinafter described
and claimed, reference being had to the accompanying draw-
ings forming a part hereof, wherein like numerals refer to like
parts throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a layer model of a storage area network.

FIG. 2 is a block diagram of a cluster computing system.

FIG. 3 is a block diagram of filesystem specific and non-
specific layers in a metadata server and a metadata client.

FIG. 4A-4B are block diagram of behavior chains.

FIG. 5 is a block diagram showing the request and return of
tokens.

FIG. 6 is a block diagram of integration between a data
migration facility server and a client node.

FIGS. 7 and 8 are flowcharts of operations performed to
access data under hierarchical storage management.

FIG. 9 is a block diagram of a mirrored data volume.

FIG. 10 is a state machine diagram of cluster membership.

US 9,275,058 B2

3

FIG. 11 is a flowchart of a process for recovering from the
loss of a node.

FIG. 12 is a flowchart of a common object recovery proto-
col.

FIG. 13 a flowchart of a kernel object relocation engine.

FIGS. 14A-14H are a sequence of state machine diagrams
of server relocation.

FIGS. 15A and 15B are flowcharts of executing vnode
operations according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

Following are several terms used herein that are in common
use in describing filesystems or SANSs, or are unique to the
disclosed system_ Several of the terms will be defined more
thoroughly below.

bag indefinitely sized container object for tagged data

behavior chain vnode points to head, elements are inode,

and vnode operations

cfs or CXFS cluster file system (CXFS is from Silicon

Graphics, Inc.)

chandle client handle: barrier lock, state information and

an object pointer

CMS cell membership services

CORPSE common object recovery for server endurance

devn file system specific components for vnode in client,

i.e., inode

DMAPI data migration application programming interface

DNS distributed name service, such as SGI’s white pages

dsvn cfs specific components for vnode in server, i.e.,

inode

heartbeat network message indicating a node’s presence on

a LAN

HSM hierarchical storage management

inode file system specific information, i.e., metadata

KORE kernel object relocation engine

manifest bag including object handle and pointer for each

data structure

quiesce render quiescent, i.e., temporarily inactive or dis-

abled

RPC remote procedure call

token an object having states used to control access to

data & metadata

vfs virtual file system representing the file system itself

vnode virtual inode to manipulate files without file system

details

XVM volume manager for CXFS

In addition there are three types of input/output operations
that can be performed in a system according to the present
invention: buffered I/O, direct /O and memory mapped 1/O.
Buffered I/O are read and write operations via system calls
where the source or result of the [/O operation can be system
memory on the machine executing the I/O, while direct I/O
are read and write operations via system calls where the data
is transferred directly between the storage device and the
application programs memory without being copied through
system memory.

Memory mapped [/O are read and write operations per-
formed by page fault. The application program makes a sys-
tem call to memory map a range of a file. Subsequent read
memory accesses to the memory returned by this system call
cause the memory to be filled with data from the file. Write
accesses to the memory cause the data to be stored in the file.
Memory mapped I/O uses the same system memory as buft-
ered 1/O to cache parts of the file.

A SAN layer model is illustrated in FIG. 1. SAN technol-
ogy can be conveniently discussed in terms of three distinct

10

15

20

25

30

35

40

45

50

55

60

65

4

layers. Layer 1 is the lowest layer which includes basic hard-
ware and software components necessary to construct a work-
ing SAN. Recently, layer 1 technology has become widely
available, and interoperability between vendors is improving
rapidly. Single and dual arbitrated loops have seen the earliest
deployment, followed by fabrics of one or more Fibre Chan-
nel switches.

Layer 2 is SAN management and includes tools to facilitate
monitoring and management of the various components of a
SAN. All the tools used in direct-attach storage environments
are already available for SANs. Comprehensive LAN man-
agement style tools that tie common management functions
together are being developed. SAN management will soon
become as elegant as LAN management.

The real promise of SANs, however, lies in layer 3, the
distributed, shared filesystem. Layer 1 and layer 2 compo-
nents allow a storage infrastructure to be built in which all
SAN-connected computer systems potentially have access to
all SAN-connected storage, but they don’t provide the ability
to truly share data. Additional software is required to mediate
and manage shared access, otherwise data would quickly
become corrupted and inaccessible.

In practice, this means that on most SANS, storage is still
partitioned between various systems. SAN managers may be
able to quickly reassign storage to another system in the face
of a failure and to more flexibly manage their total available
storage, but independent systems cannot simultaneously
access the same data residing in the same filesystems.

Shared, high-speed data access is critical for applications
where large data sets are the norm. In fields as diverse as
satellite data acquisition and processing, CAD/CAM, and
seismic data analysis, it is common for files to be copied from
a central repository over the LAN to a local system for pro-
cessing and then copied back. This wasteful and inefficient
process can be completely avoided when all systems can
access data directly over a SAN.

Shared access is also crucial for clustered computing.
Access controls and management are more stringent than
with network filesystems to ensure data integrity. In most
existing high-availability clusters, storage and applications
are partitioned and another server assumes any failed server’s
storage and workload. While this may prevent denial of ser-
vice in case of a failure, load balancing is difficult and system
and storage bandwidth is often wasted. In high-performance
computing clusters, where workload is split between multiple
systems, typically only one system has direct data access. The
other cluster members are hampered by slower data access
using network file systems such as NFS.

In a preferred embodiment, the SAN includes hierarchical
storage management (HSM) such as data migration facility
(DMF) by Silicon Graphics, Inc. (SGI) of Mountain View,
Calif. The primary purpose of HSM is to preserve the eco-
nomic value of storage media and stored data. The high input/
output bandwidth of conventional machine environments is
sufficient to overrun online disk resources. HSM transpar-
ently solves storage management issues, such as managing
private tape libraries, making archive decisions, and journal-
ing the storage so that data can be retrieved at a later date.

Preferably, a volume manager, such as XVM from SGI
supports the cluster environment by providing an image of
storage devices across all nodes in a cluster and allowing for
administration of the devices from any cell in the cluster.
Disks within a cluster can be assigned dynamically to the
entire cluster or to individual nodes within the cluster. In one
embodiment, disk volumes are constructed using XVM to
provide disk striping, mirroring, concatenation and advanced
recovery features. Low-level mechanisms for sharing disk

US 9,275,058 B2

5

volumes between systems are provided, making defined disk
volumes visible across multiple systems. XVM is used to
combine a large number of disks across multiple Fibre Chan-
nels into high transaction rate, high bandwidth, and highly
reliable configurations. Due to its scalability, XVM provides
an excellent complement to CXFS and SANs. XVM is
designed to handle mass storage growth and can configure
millions of terabytes (exabytes) of storage in one or more
filesystems across thousands of disks.

An example of a cluster computing system formed of het-
erogeneous computer systems or nodes is illustrated in FIG.
2. In the example illustrated in FIG. 2, nodes 22 (e.g., 22a-
22d) run the IRIX operating system from SGI while nodes 24
(e.g., 24a-24b) run the Solaris operating system from Sun and
node 26 runs the Windows NT operating system from
Microsoft Corporation of Redmond Wash. Each of these
nodes is a conventional computer system including at least
one, and in many cases several processors, local or primary
non-transitory memory, some of which is used as a disk
cache, input/output (I/0) interfaces /O devices, such as one
or more displays or printers. According to the present inven-
tion, the cluster includes a storage area network in which
mass or secondary storage, such as disk drives 28 (e.g., 28a-
28d) are connected to the nodes 22 (22a-22¢), 24 (24a-24b),
26 via Fibre Channel switch 30 and Fibre Channel connec-
tions 32(e.g.,32a-32m). The nodes 22 (e.g., 22a-22¢), 24
(e.g.,24a-24b), 26 are also connected via a local area network
(LAN) 34, such as an Ethernet, using TCP/IP to provide
messaging and heartbeat signals. In the preferred embodi-
ment, a serial port multiplexer 36 is also connected to the
LAN and to a serial port of each node to enable hardware reset
of the node. In the example illustrated in FIG. 2, only IRIX
nodes 22 (e.g., 22a-22¢)are connected to serial port multi-
plexer 36.

Other kinds of non-transitory storage devices besides disk
drives 28 (e.g., 28a-284d) may be connected to the Fibre Chan-
nel switch 30 via Fibre Channel connections 32 (e.g., 32a-
32m). Tape drives 38 (e.g., 38a-384) are illustrated in FIG. 2,
but other conventional non-transitory storage devices may
also be connected. Alternatively, tape drives 38 (e.g., 38a-
38d) (or other non-transitory storage devices) may be con-
nected to one or more of nodes 22 (e.g., 22a-22¢), 24 (e.g.,
24a-24b), 26, e.g., via SCSI connections (not shown).

In a conventional SAN, the disks are partitioned for access
by only a single node per partition and data is transferred via
the LAN. On the other hand, if node 22¢ needs to access data
in a partition to which node 224 has access, according to the
present invention very little of the data stored on disk 28 (e.g.,
28a-284) is transmitted over LAN 34. Instead LAN 34 is used
to send metadata describing the data stored on disk 28 (e.g.,
28a-28d), token messages controlling access to the data,
heartbeat signals and other information related to cluster
operation and recovery.

In the preferred embodiment, the cluster filesystem is layer
that distributes input/output directly between the disks and
the nodes via Fibre Channel 30,32 (e.g., 32a-32m) while
retaining an underlying layer with an efficient input/output
path using asynchronous buffering techniques to avoid
unnecessary physical input/outputs by delaying writes as
long as possible. This allows the filesystem to allocate the
data space efficiently and often contiguously. The data tends
to be allocated in large contiguous chunks, which yields sus-
tained high bandwidths.

Preferably, the underlying layer uses a directory structure
based on B-trees, which allow the cluster filesystem to main-
tain good response times, even as the number of files in a
directory grows to tens or hundreds of thousands of files. The

10

15

20

25

30

35

40

45

50

55

60

65

6

cluster filesystem adds a coordination layer to the underlying
filesystem layer. Existing filesystems defined in the underly-
ing layer can be migrated to a cluster filesystem according to
the present invention without necessitating a dump and
restore (as long as the storage can be attached to the SAN).
For example, in the IRIX nodes 22, XVM is used for volume
management and XFS is used for filesystem access and con-
trol. Thus, the cluster filesystem layer is referred to as CXFS.

In the cluster file system of the preferred embodiment, one
of'the nodes, e.g., IRIX node 224, is a metadata server for the
other nodes 22, 24, 26 in the cluster which are thus metadata
clients with respect to the file system(s) for which node 225 is
a metadata server. Other node(s) may serve as metadata
server(s) for other file systems. All of the client nodes 22, 24
and 26, including metadata server 225, provide direct access
to files on the filesystem. This is illustrated in FIG. 3 in which
“vnode” 42 presents a file system independent set of opera-
tions on a file to the rest of the operating system. In metadata
client 22a the vnode services requests using the clustered
filesystem routines associated with dcvn 44 which include
token client operations 46 described in more detail below.
However, in metadata server 225, the file system requests are
serviced by the clustered filesystem routines associated with
dsvn 48 which include token client operations 46 and token
server operations 50. The metadata server 225 also maintains
the metadata for the underlying filesystem, in this case XFS
52.

As illustrated in FIG. 4A is a vnode behavior chain for a
DMAPI-enabled filesystem on metadata server 225. Operat-
ing systems, other than IRIX, that use vnodes may have
similar structures referred to as “vnode private data” or some-
thing else, but the term behavior will be used below. The
corresponding vnode behavior chain for client nodes 22, 24,
26, is illustrated in FIG. 4B. According to the present inven-
tion vnode 42 contains the head 53 of a chain of behaviors 54.
Each behavior points to a set of vnode operations 58 and at
least filesystem specific inode data structure 56¢. In the case
of the files which are only being accessed by applications
running directly on the metadata server 224, only behavior
54c¢ is present and the vnode operations 58¢ are serviced
directly by the underlying filesystem, e.g., XFS. The vnode
operations 58 are typical file system operations, such as cre-
ate, lookup, read, write. When the filesystem is being
accessed one.g., server 225, by applications running on client
nodes, then at least behavior 545 is also present. In this case
the vnode operations 585 manage the distribution of the file
metadata between nodes in the cluster, and in turn use vnode
operations 58¢ to perform requested manipulation of the file
metadata. If the filesystem if DMAPI-enabled, behavior 54a
precedes any CXFS related behaviors, such as behavior 545.
Token Infrastructure

The tokens operated on by the token client 46 and token
server 50 in an exemplary embodiment are listed below. Each
token may have three levels, read, write, or shared write.
Token clients 46a and 465 (FIG. 3) obtain tokens from the
token server 50. Each of the token levels, read, shared write
and write, conflicts with the other levels, so a request for a
token at one level will result in the recall of all tokens at
different levels prior to the token being granted to the client
which requested it_ The write level of a token also conflicts
with other copies of the write token, so only one client at a
time can have the write token. Different tokens are used to
protect access to different parts of the data and metadata
associated with a file.

Certain types of write operations may be performed simul-
taneously by more than one client, in which case the shared
write level is used. An example is maintaining the timestamps

US 9,275,058 B2

7

for a file. To reduce overhead, when reading or writing a file,
multiple clients can hold the shared write level and each
update the timestamps locally. If a client needs to read the
timestamp, it obtains the read level of the token. This causes
all the copies of the shared write token to be returned to the
metadata server 225 along with each client’s copy of the file
timestamps. The metadata server selects the most recent
timestamp and returns this to the client requesting the infor-
mation along with the read token.

Acquiring a token puts a reference count on the token, and
prevents it from being removed from the token client. If the
token is not already present in the token client, the token
server is asked for it. This is sometimes also referred to as
obtaining or holding a token. Releasing a token removes a
reference count on a token and potentially allows it to be
returned to the token server. Recalling or revoking a token is
the act of asking a token client to give a token back to the
token server. This is usually triggered by a request for a
conflicting level of the token.

When a client needs to ask the server to make a modifica-
tion to a file, it will frequently have a cached copy of a token
at a level which will conflict with the level of the token the
server will need to modify the file. In order to minimize
network traffic, the client ‘lends’ its read copy of the token to
the server for the duration of the operation, which prevents the
server from having to recall it. The token is given back to the
client at the end of the operation.

Following is a list of tokens in an exemplary embodiment:

DVN_EXIST is the existence token. Represents the fact
thataclient has references to the vnode. Each client which has
a copy of the inode has the read level of this token and keeps
it until they are done with the inode. The client does not
acquire and release this token around operations, it just keeps
it in the token client. The server keeps one reference to the
vnode (which keeps it in memory) for each client which has
an existence token. When the token is returned, this reference
count is dropped. If someone unlinks the file—which means
it no longer has a name, then the server will conditionally
recall all the existence tokens. A conditional recall means the
client is allowed to refuse to send the token back. In this case
the clients will send back all the tokens and state they have for
the vnode if no application is currently using it. Once all the
existence tokens are returned, the reference count on the
server’s vnode drops to zero, and this results in the file being
removed from the filesystem.

DVN_IOEXCL is the I/O exclusive token. The read token
is obtained by any client making read or write calls on the
vnode. The token is held across read and write operations on
the file. The state protected by this token is what is known as
the I/O exclusive state. This state is cached on all the clients
holding the token. If the state is true then the client knows it is
the only client performing read/write operations on the file.
The server keeps track of when only one copy of the token has
been granted to a client, and before it will allow a second copy
to be given out, it sends a message to the first client informing
it that the /O exclusive state has changed from true to false.
When a client has an I/O exclusive state of true is allowed to
cache changes to the file more aggressively than otherwise.

DVN_IO is the IO token which is used to synchronize
between read and write calls on different computers. CXFS
enforces a rule that buffered reads are atomic with respect to
buffered writes, and writes are atomic with respect to other
writes. This means that a buffered read operation happens
before or after a write, never during a write. Buffered read
operations hold the read level of the token, buffered writes
hold the write level of the token. Direct reads and writes hold
the read level of the token.

10

15

20

25

30

35

40

45

50

55

60

65

8

DVN_PAGE_DIRTY represents the right to hold modified
file data in memory on a system.

DVN_PAGE_CLEAN represents the right to hold unmodi-
fied file data in memory on a computer. Combinations of
levels of DVN_PAGE_DIRTY and DVN_PAGE_CLEAN
are used to maintain cache coherency across the cluster.

DVN_NAME is the name token. A client with this token in
the token client for a directory is allowed to cache the results
of lookup operations within the directory. So if we have a
name we are looking up in a directory, and we have done the
same lookup before, the token allows us to avoid sending the
lookup to the server. An operation such as removing or renam-
ing, or creating a file in a directory will obtain the write level
of the token on the server and recall the read token—invali-
dating any cached names for that directory on those clients.

DVN_ATTR protects fields such as the ownership infor-
mation, the extended attributes of the file, and other small
pieces of information. Held by the client for read, and by the
server for write when the server is making modifications.
Recall of the read token causes the invalidation of the
extended attribute cache.

DVN_TIMES protects timestamp fields on the file. Held at
the read level by hosts who are looking at timestamps, held at
the shared write level by hosts doing read and write opera-
tions, and held at the write level on the server when setting
timestamps to an explicit value. Recall of the shared write
token causes the client to send back its modified timestamps,
the server uses the largest of the returned values as the true
value of the timestamp.

DVN_SIZE protects the size of the file, and the number of
disk blocks in use by the file. Held for read by a client who
wants to look at the size, or for write by a client who has a true
10 exclusive state. This allows the client to update the size of
the file during write operations without having to immedi-
ately send the updated size back to the server.

DVN_EXTENT protects the metadata which indicates
where the data blocks for a file are on disk, known as the
extent information. When a client needs to perform read or
write operation it obtains the read level of the token and gets
of'a copy of the extent information with it. Any modification
of the extent information is performed on the server and is
protected by the write level of the token. A client which needs
space allocated in the file will lend its read token to the server
for this operation.

DVN_DMAPI protects the DMAPI event mask. Held at
the read level during 1O operations to prevent a change to the
DMAPI state of the file during the 1O operation. Only held for
write by DMAPI on the server.

Data coherency is preferably maintained between the
nodes in a cluster which are sharing access to a file by using
combinations ofthe DVN_PAGE_DIRTY and DVN_PAGE_
CLEAN tokens for the different forms of input/output. Buft-
ered and memory mapped read operations hold the
DVN_PAGE_CLEAN_READ token, while buffered and
memory mapped write operations hold the DVN_PAGE_
CLEAN_WRITE and VN_PAGE_DIRTY_WRITE tokens.
Direct read operations hold the DVN_PAGE_CLEAN_
SHARED_WRITE token and direct write operations hold the
DVN_PAGE_CLEAN_SHARED_WRITE and VN_PAGE_
DIRTY_SHARED_WRITE tokens. Obtaining these tokens
causes other nodes in the cluster which hold conflicting levels
of the tokens to return their tokens. Before the tokens are
returned, these client nodes perform actions on their cache of
file contents. On returning the DVN_PAGE_ DIRTY_
WRITE token a client node must first flush any modified data
for the file out to disk and then discard it from cache. On
returning the DVN_PAGE_CLEAN_WRITE

US 9,275,058 B2

9

token a client node must first flush any modified data out to
disk. If both of these tokens are being returned then both the
flush and discard operations are performed. On returning the
DVN_PAGE_CLEAN_READ token to the server, a client
node must first discard any cached data for the file it has in
system memory.

An illustration to aid in understanding how tokens are
requested and returned is provided in FIG. 5. A metadata
client (dcvn) needs to perform an operation, such as a read
operation on a file that has not previously been read by that
process. Therefore, metadata client 444 sends a request on
path 62 to token client 464 at the same node, e.g., node 22a.
If another client process at that node has obtained the read
token for the file, token client 464 returns the token to object
client 44a and access to the file by the potentially competing
processes is controlled by the operating system of the node. If
token client 46a does not have the requested read token,
object client 44q is so informed via path 64 and metadata
client 44a requests the token from metadata server (dsvn) 48
via path 66. Metadata server 48 requests the read token from
token server 50 via path 68. If the read token is available, it is
returned via paths 68 and 66 to metadata client 44a which
passes the token on to token client 46a. If the read token is not
available, for example if metadata client 44¢ has a write
token, the write token is revoked via paths 70 and 72.

If metadata client 444 had wanted a write token in the
preceding example, the write token must be returned by meta-
data client 44c¢. The request for the write token continues from
metadata client 44¢ to token client 46c¢ via path 74 and is
returned via paths 76 and 78 to metadata server 48 which
forwards the write token to token server 50 via path 80. Once
token server 50 has the write token, it is supplied to metadata
client 44a via paths 68 and 66 as in the case of the read token
described above.

Appropriate control of the tokens for each file by metadata
server 48 at node 226 enables nodes 22 (e.g., 22a-22c¢), 24
(e.g.,24a-24b), 26 in the cluster to share all of the files on disk
28 (e.g.,28a-28d)using direct access via Fibre Channel 30, 32
(e.g.,32a-32m). To maximize the speed with which the data is
accessed, data on the disk are cached at the nodes as much as
possible. Therefore, before returning a write token, the meta-
data client 44 flushes the write cache to disk. Similarly, if it is
necessary to obtain a read token, the read cache is marked
invalid and after the read token is obtained, contents of the file
are read into the cache.

Mounting of a filesystem as a metadata server is arbitrated
by a distributed name service (DNS), such as “white pages”
from SGI. A DNS server runs on one of the nodes, e.g., node
22c¢, and each of the other nodes has DNS clients. Subsystems
such as the filesystem, when first attempting to mount a
filesystem as the metadata server, first attempt to register a
filesystem identifier with the distributed name service. If the
identifier does not exist, the registration succeeds and the
node mounts the filesystem as the server. If the identifier is
already registered, the registration fails and the contents of the
existing entry for the filesystem identifier are returned,
including the node number of the metadata server for the
filesystem.

Hierarchical Storage Management

In addition to caching data that is being used by a node, in
the preferred embodiment hierarchical storage management
(HSM), such as the data migration facility (DMF) from SGI,
is used to move data to and from tertiary storage, particularly
data that is infrequently used. As illustrated in FIG. 6,
process(es) that implement HSM 88 preferably execute on the
same node 225 as metadata server 48 for the file system(s)
under hierarchical storage management. Also residing on

10

15

20

25

30

35

40

45

50

55

60

65

10
node 226 are the objects that form DMAPI 90 which inter-
faces between HSM 88 and metadata server 48.

Flowcharts of the operations performed when client node
22a requests access to data under hierarchical storage man-
agement are provided in FIGS. 7 and 8. When user application
92 (FIG. 6) issues /O requests 94 (FIG. 7) the DMAPI token
must be acquired 96. This operation is illustrated in FIG. 8
where a request for the DMAPI token is issued 98 to metadata
client 46a. As discussed above with respect to FIG. 5, meta-
data client 46a determines 100 whether the DMAPI token is
held at client node 22a. If not, a lookup operation on the
metadata server 226 and the token request is sent. When
metadata server 22b receives 206 the token request, it is
determined 108 whether the token is available. If not, the
conflicting tokens are revoked 110 and metadata server 225
pauses or goes into a loop until the token can be granted 112.
Files under hierarchical storage management have a DMAPI
event mask (discussed further below) which is then retrieved
114 and forwarded 116 with the DMAPI token. Metadata
client 22a receives 118 the token and the DMAPI event mask
and updates 120 the local DMAPI event mask. The DMAPI
token is then held 222 by token client 46a.

As illustrated in FIG. 7, next the DMAPI event mask is
checked to determined 124 whether a DMAPI event is set,
i.e., to determine whether the file to be accessed is under
hierarchical storage management. If so, another lookup 126
of the metadata server is performed as in step 102 so that a
message can be sent 128 to the metadata server informing the
metadata server 224 of the operation to be performed. When
server node 224 receives 130 the message, metadata server 48
sends 132 notification of the DMAPI event to DMAPI 90
(FIG. 6). The DMAPI event is queued 136 and subsequently
processed 138 by DMAPI 90 and HSM 88.

The possible DMAPI events are read, write and truncate.
When a read event is queued, the DMAPI server informs the
HSM software to ensure that data is available on disks. If
necessary, the file requested to be read is transferred from tape
to disk. If a write event is set, the HSM software is informed
that the tape copy will need to be replaced or updated with the
contents written to disk. Similarly, if a truncate event is set,
the appropriate change in file size is performed, e.g., by
writing the file to disk, adjusting the file size and copying to
tape.

Upon completion of the DMAPI event, a reply is forwarded
140 by metadata server 50 to client node 22a which receives
142 the reply and user application 92 performs 146 input/
output operations_ Upon completion of those operations, the
DMAPI token is released 148.

Maintaining System Availability

In addition to high-speed disk access obtained by caching
data and shared access to disk drives via a SAN, it is desirable
to have high availability of the cluster. This is not easily
accomplished with so much data being cached and multiple
nodes sharing access to the same data. Several mechanisms
are used to increase the availability of the cluster as awhole in
the event of failure of one or more of the components or even
an entire node, including a metadata server node.

One aspect of the present invention that increases the avail-
ability of data is the mirroring of data volumes in mass storage
28 (e.g., 28a-28d). As in the case of conventional mirroring,
during normal operation the same data is written to multiple
devices. Mirroring may be used in conjunction with striping
in which different portions of a data volume are written to
different disks to increase speed of access. Disk concatena-
tion can be used to increase the size of a logical volume.
Preferably, the volume manager allows any combination of
striping, concatenation and mirroring. FIG. 9 provides an

US 9,275,058 B2

11

example of a volume 160 that has a mirror 162 with a leg 164
that is a concatenation of data on two physical disks 166, 168
and an interior mirror 170 of two legs 172, 174 that are each
striped across three disks 176, 178, 180 and 182, 184, 186.

The volume manager may have several servers which oper-
ate independently, but are preferably chosen using the same
logic. A node is selected from the nodes that have been in the
cluster membership the longest and are capable of hosting the
server. From that pool of nodes the lowest numbered node is
chosen. The volume manager servers are chosen at cluster
initialization time or when a server failure occurs. In an exem-
plary embodiment, there are four volume manager servers,
termed boot, config, mirror and pal.

The volume manager exchanges configuration information
at cluster initialization time. The boot server receives con-
figuration information from all client nodes. Some of the
client nodes could have different connectivity to disks and
thus, could have different configurations. The boot server
merges the configurations and distributes changes to each
client node using a volume manager multicast facility. This
facility preferably ensures that updates are made on all nodes
in the cluster or none of the nodes using two-phase commit
logic. After cluster initialization it is the config server that
coordinates changes. The mirror server maintains the mirror
specific state information about whether a revive is needed
and which mirror legs are consistent.

In a cluster system according to the present invention, all
data volumes and their mirrors in mass storage 28 (e.g., 28a-
28d)are accessible from any node in the cluster. Each mirror
has a node assigned to be its mirror master. The mirror master
may be chosen using the same logic as the mirror server with
the additional constraint that it must have a physical connec-
tion to the disks. During normal operation, queues may be
maintained for input/output operations for all of the client
nodes by the mirror master to make the legs of the mirror
consistent across the cluster. In the event of data loss on one
of the disk drives forming mass storage 28 (e.g., 28a-284), a
mirror revive process is initiated by the mirror master, e.g.,
node 22¢ (FIG. 2), which detects the failure and is able to
execute the mirror revive process.

If'a client node, e.g., node 224, terminates abnormally, the
mirror master node 22¢ will search the mirror input/output
queues for outstanding input/output operations from the
failed node and remove the outstanding input/output opera-
tions from the queues. If a write operation from a failed
process to a mirrored volume is in a mirror input/output
queue, a mirror revive process is initiated to ensure that mirror
consistency is maintained. If the mirror master fails, a new
mirror master is selected and the mirror revive process starts
at the beginning of the mirror of a damaged data volume and
continues to the end of the mirror.

When a mirror revive is in progress, the mirror master
coordinates input/output to the mirror. The mirror revive pro-
cess uses an overlap queue to hold I/O requests from client
nodes made during the mirror revive process. Prior to begin-
ning to read from an intact leg of the mirror, the mirror revive
process ensures that all other input/output activity to the range
of addresses is complete. Any input/output requests made to
the address range being revived are refused by the mirror
master until all the data in that range of addresses has been
written by the mirror revive process.

If'there is an I/O request for data in an area that is currently
being copied in reconstructing the mirror, the data access is
retried after a predetermined time interval without informing
the application process which requested the data access.
When the mirror master node 22¢ receives a message that an
application wants to do input/output to an area of the mirror

10

15

20

25

30

35

40

45

50

55

60

65

12

that is being revived, the mirror master node 22¢ will reply
that the access can either proceed or that the I/O request
overlaps an area being revived. In the latter case, the client
node will enter a loop in which the access is retried periodi-
cally until it is successful, without the application process
being aware that this is occurring.

Input/output access to the mirror continues during the mir-
ror revive process with the volume manager process keeping
track of the first unsynchronized block of data to avoid unnec-
essary communication between client and server. The client
node receives the revive status and can check to see if it has an
1/0 request preceding the area being synchronized. If the [/O
request precedes that area, the /O request will be processed
as if there was no mirror revive in progress.

Data read from unreconstructed portions of the mirror by
applications are preferably written to the copy being recon-
structed, to avoid an additional read at a later period in time.
The mirror revive process keeps track of what blocks have
been written in this manner. New data written by applications
in the portion of the mirror that already have been copied by
the mirror revive process are mirrored using conventional
mirroring. If an interior mirror is present, it is placed in
writeback mode. When the outer revive causes reads to the
interior mirror, it will automatically write to all legs of the
interior mirror, thus synchronizing the interior mirror at the
same time.

Recovery and Relocation

In the preferred embodiment, a common object recovery
protocol (CORPSE) is used for server endurance. As illus-
trated in FIG. 10, if a node executing a metadata server fails,
the remaining nodes will become aware of the failure from
loss of heartbeat, error in messaging or by delivery of a new
cluster membership excluding the failed node. The first step
in recovery or initiation of a cluster is to determine the mem-
bership and roles of the nodes in the cluster. If the heartbeat
signal is lost from a node or a new node is detected in the
cluster, a new membership must be determined. To enable a
computer system to access a cluster filesystem, it must first be
defined as a member of the cluster, i.e., a node, in that file-
system.

As illustrated in FIG. 10, when a node begins 202 opera-
tion, it enters a nascent state 204 in which it detects the
heartbeat signals from other nodes and begins transmitting its
own heartbeat signal. When enough heartbeat signals are
detected to indicate that there are sufficient operating nodes to
form aviable cluster, requests are sent for information regard-
ing whether there is an existing membership for the cluster. If
there is an existing leader for the cluster, the request(s) will be
sent to the node in the leader state 206. If there is no existing
leader, conventional techniques are used to elect a leader and
that node transitions to the leader state 206. For example, a
leader may be selected that has been a member of the cluster
for the longest period of time and is capable of being a
metadata server.

The node in the leader state 206 sends out messages to all
of'the other nodes that it has identified and requests informa-
tion from each of those nodes about the nodes to which they
are connected. Upon receipt of these messages, nodes in the
nascent state 204 and stable state 208 transition to the fol-
lower state 210. The information received in response to these
requests is accumulated by the node in the leader state 206 to
identify the largest set of fully connected nodes for a proposed
membership. Identifying information for the nodes in the
proposed membership is then transmitted to all of the nodes in
the proposed membership. Once all nodes accept the mem-
bership proposed by the node in the leader state 206, all of the
nodes in the membership transition to the stable state 208 and

US 9,275,058 B2

13

recovery is initiated 212 if the change in membership was due
to a node failure. If the node in the leader state 206 is unable
to find sufficient operating nodes to form a cluster, i.e., a
quorum, all of the nodes transition to a dead state 214.

If a node is deactivated in an orderly fashion, the node
sends a withdrawal request to the other nodes in the cluster,
causing one of the nodes to transition to the leader state 206.
As in the case described above, the node in the leader state
206 sends a message with a proposed membership causing
the other nodes to transition to the follower state 210. If a new
membership is established, the node in the leader state 206
sends an acknowledgement to the node that requested with-
drawal from membership and that node transitions to a shut-
down state 216, while the remaining nodes transition to the
stable state 208.

In the stable state 208, message channels are established
between the nodes 22, 24, 26 over LAN 34. A message trans-
port layer in the operating system handles the transmission
and receipt of messages over the message channels. One set of
message channels is used for general messages, such as token
requests and metadata. Another set of channels is used just for
membership. If it is necessary to initiate recovery 212, the
steps illustrated in FIG. 11 are performed. Upon detection of
a node failure 222, by loss of heartbeat or messaging failure,
the message transport layer in the node detecting the failure
freezes 224 the general message channels between that node
and the failed node and disconnects the membership chan-
nels. The message transport layer then notifies 226 the cell
membership services (CMS) daemon.

Upon notification of a node failure, the CMS daemon
blocks 228 new nodes from joining the membership and
initiates 230 the membership protocol represented by the
state machine diagram in FIG. 10. A leader is selected and the
process of membership delivery 232 is performed as dis-
cussed above with respect to FIG. 10.

In the preferred embodiment, CMS includes support for
nodes to operate under different versions of the operating
system, so that it is not necessary to upgrade all of the nodes
at once. Instead, a rolling upgrade is used in which a node is
withdrawn from the cluster, the new software is installed and
the node is added back to the cluster. The time period between
upgrades may be fairly long, if the people responsible for
operating the cluster want to gain some experience using the
new software.

Version tags and levels are preferably registered by the
various subsystems to indicate version levels for various
functions within the subsystem. These tags and levels are
transmitted from follower nodes to the CMS leader node
during the membership protocol 230 when joining the cluster.
The information is aggregated by the CMS leader node and
membership delivery 232 includes the version tags and levels
for any new node in the cluster. As a result all nodes in the
know the version levels of functions on other nodes before
any contact between them is possible so they can properly
format messages or execute distributed algorithms.

Upon initiation 212 of recovery, the following steps are
performed. The first step in recovery involves the credential
service subsystem. The credential subsystem caches informa-
tion about other nodes, so that each service request doesn’t
have to contain a whole set of credentials. As the first step of
recovery, the CMS daemon notifies 234 the credential sub-
system in each of the nodes to flush 236 the credentials from
the failed node.

When the CMS daemon receives acknowledgment that the
credentials have been flushed, common object recovery is
initiated 238. Details of the common object recovery protocol
for server endurance (CORPSE) will be described below with

15

25

30

35

40

45

55

14

respect to FIG. 12. An overview of the CORPSE process is
illustrated in FIG. 11, beginning with the interrupting 240 of
messages from the failed node and waiting for processing of
these messages to complete. Messages whose service
includes a potentially unbounded wait time are returned with
an error.

After all of the messages from the failed node have been
processed, CORPSE recovers the system in three passes start-
ing with the lowest layer (cluster infrastructure) and ending
with the file system. In the first pass, recovery of the kernel
object relocation engine (KORE) is executed 242 for any
in-progress object relocation involving a failed node. In the
second pass, the distributed name server (white pages) and the
volume manager, such as XVM, are recovered 244 making
these services available for filesystem recovery. In the third
pass the file system is recovered 246 to return all files to a
stable state based on information available from the remain-
ing nodes. Upon completion of the third pass, the message
channels are closed 248 and new nodes are allowed 250 to
join.

As illustrated in FIG. 12, the first step in CORPSE is to
elect 262 a leader for the purposes of recovery. The CORPSE
leader is elected using the same algorithm as described above
with respect to the membership leader 206. In the event of
another failure before recovery is completed, a new leader is
elected 262. The node selected as the CORPSE leader initial-
izes 264 the CORPSE process to request the metadata client
processes on all of the nodes to begin celldown callouts as
described below. The purpose of initialization is to handle
situations in which another node failure is discovered before
a pass is completed. First, the metadata server(s) and clients
initiate 266 message interrupts and holds all create locks.

The next step to be performed includes detargeting a
chandle. A chandle or client handle is a combination of a
barrier lock, some state information and an object pointer that
is partially subsystem specific. A chandle includes a node
identifier for where the metadata server can be found and a
field that the subsystem defines which tells the chandle how to
locate the metadata server on that node, e.g., using a hash
address or an actual memory address on the node. Also stored
in the chandle is a service identifier indicating whether the
chandle is part of the filesystem, vnode file, or distributed
name service and a multi-reader barrier lock that protects all
of this. When a node wants to send a message to a metadata
server, it acquires a hold on the multi-reader barrier lock and
once that takes hold the service information is decoded to
determine where to send the message and the message is
created with the pointer to the object to be executed once the
message reaches the metadata server.

With messages interrupted and create locks held, celldown
callouts are performed 268 to load object information into a
manifest object and detarget the chandles associated with the
objects put into the manifest. By detargeting a chandle, any
new access on the associated object is prevented. The create
locks are previously held 266 on the objects needed for recov-
ery to ensure that the objects are not instantiated for continued
processing on a client node in response to a remote processing
call (RPC) previously initiated on a failed metadata server. An
RPC is a thread initiated on a node in response to a message
from another node to act as a proxy for the requesting node. In
the preferred embodiment, RPCs are used to acquire (or
recall) tokens for the requesting node. During celldown call-
outs 268 the metadata server recovers from any lost clients,
returning any tokens the client(s) held and purging any state
held on behalf of the client.

The CORPSE subsystems executing on the metadata cli-
ents go through all of the objects involved in recovery and

US 9,275,058 B2

15

determine whether the server for that client object is in the
membership for the cluster. One way of making this determi-
nation is to examine the service value in the chandle for that
client object, where the service value contains a subsystem
identifier and a server node identifier. Object handles which
identify the subsystems and subsystem specific recovery data
necessary to carry out further callouts are placed in the mani-
fest. Server nodes recover from client failure during celldown
callouts by returning failed client tokens and purging any
state associated with the client.

When celldown callouts have been performed 268 for all of
the objects associated with a failed node, the operations fro-
zen 266 previously are thawed or released 270. The message
channel is thawed 270, so that any threads that are waiting for
responses can receive error messages that a cell is down, i.e.,
anode has failed, so that that the threads can do any necessary
cleanup and then drop the chandle hold. This allows all of the
detargets to be completed. In addition, the create locks are
released 270. The final result of the operations performed in
step 270 is that all client objects associated with the filesystem
are quiesced, so that no further RPCs will be sent or are
awaiting receipt.

After the celldown callouts 268 have processed the infor-
mation about the failed node(s), vote callouts are performed
272 in each of the remaining nodes to elect a new server. The
votes are sent to the CORPSE leader which executes 274
election callouts to identify the node(s) that will host the new
servers. The election algorithm used is subsystem specific.
The filesystem selects the next surviving node listed as a
possible server for the filesystem, while the DNS selects the
oldest server capable node.

When all of the nodes are notified of the results of the
election, gather callouts are performed 276 on the client
nodes to create manifests for each server on the failed node(s).
Each manifest contains information about one of the servers
and is sent to the node elected to host that server after recov-
ery. A table of contents of the information in the bag is
included in each manifest, so that reconstruct callouts can be
performed 278 on each object and each manifest from each of
the nodes.

The reconstruct callouts 278 are executed on the new
elected server to extract information from the manifests
received from all the nodes while the chandles are detargeted,
so that none of the nodes attempt to access the elected server.
When the reconstruct callouts 278 are completed, a message
is sent to the CORPSE leader that it is ready to commit 280 to
instantiate the objects of the server. The instantiate callouts
are then performed 282 and upon instantiation of all of the
objects, a commitment 284 is sent to the CORPSE leader for
retargeting the chandles to the elected server. The instantiate
commit 280 and retarget commit 284 are performed by the
CORPSE leader, to save information regarding the extent of
recovery, in case there is another node failure prior to comple-
tion of a pass. If a failure occurs prior to instantiate commit
280, the pass is aborted and recovery is restarted with freezing
224 of message channels. However, once the CORPSE leader
notifies any node to go forward with instantiating 282 new
server(s), recovery of any new node failure is delayed until the
current pass completes, then recovery rolls back to freezing
224 message channels. If the failed node contains the elected
server, the client nodes are targeted to the now-failed server
and the process of recovering the server begins again.

In the case of the second pass, WP/XVM 244, a single
chandle accesses the DNS server and the manifest created at
each client node contains all of the file identifiers in use at that
node prior to entering recovery. During the reconstruct call-
outs 278 of the second pass, the DNS server goes through all

10

20

25

40

45

16

of the entries in the manifest and creates a unique entry for
each filesystem identifier it receives. If duplicate entries
arrive, which is likely since many nodes may have the entry
for a single filesystem, tokens are allocated for the sending
node in the previously created entry.

After all of the retargets are performed 286 in each of the
nodes, a complete callout is performed 288 by the subsystem
being recovered to do any work that is required at that point.
Examples are deallocating memory used during recovery or
purging any lingering state associated with a failed node,
including removing DNS entries still referencing a failed
node. As discussed above with respect to FIG. 11, the steps
illustrated in FIG. 12 are preferably repeated in three passes
as different subsystems of the operating system are recovered.
After completion 290 of the last pass, CORPSE is completed.
Kernel Object Relocation Engine

As noted above, the first pass 242 of recovery is to recover
from an incomplete relocation of a metadata server. The ker-
nel object relocation engine (KORE) is used for an intentional
relocation of the metadata server, e.g. for an unmount of the
server or to completely shutdown a node at which a metadata
server is located, to return the metadata server to a previously
failed node, or for load shifting. Provided no nodes fail,
during relocation an object manifest can be easily created,
since all of the information required for the new, i.e., target,
metadata server can be obtained from the existing, i.e.,
source, metadata server.

As illustrated in FIG. 13, KORE begins with source node
prepare phase 302, which ensures that filesystem is quiesced
before starting the relocation. When all of the objects of the
metadata server are quiesced, they are collected into an object
manifest and sent 304 to the target metadata server. Most of
the steps performed by the target metadata server are per-
formed in both relocation and recovery. The target node is
prepared 306 and an object request is sent 308 from the target
metadata server to the source metadata server to obtain a bag
containing the state of the object being relocated.

In response, the source metadata server initiates 310 retar-
geting and creation of client structures (objects) for the
vnodes and the vfs, then all clients are informed 312 to detar-
get 314 that node as the metadata server. When the source
metadata server has been informed that all of the clients have
completed detargeting 314, a source bag is generated 316
with all of the tokens and the state of server objects which are
sent 318 to the target metadata server. The target metadata
server unbags 320 the objects and initiates execution of the
metadata server. The target metadata server informs the
source metadata server to inform 322 the clients to retarget
324 the target metadata server and processing resumes on the
target metadata server. The source metadata server is
informed when each of the clients completes retargeting 324,
so that the source node can end 326 operation as the metadata
server.

Iustrated in FIG. 15A is a flowchart of a thread moving
through a relevant part of the kernel during relocation of a
server which includes converting from vnode 42 of a server
(FIG.4A)to vnode 42 on a client (FIG. 4B). The thread enters
the kernel to perform 1/O operations and uses VOP_READ
404 to obtain the read operation from the first behavior on the
vnode behavior chain. As noted above, FIG. 4A is a vnode
behavior chain for DMAPI-enabled filesystem on metadata
server 22b.

Atthestart of VOP_READ 404, the behavior head 53 (FIG.
4A) is locked 406 to prevent the list of behaviors linked off
behavior head 53 from changing during /O operations by
locking the vnode or virtual metadata. Next, read operations
are called 410 which will include performing dmapi_bnc read

US 9,275,058 B2

17

412 by linking to behavior 54a (FIG. 4A) which includes
dmapi_bnc object 56a and vnode operations 58a. The
dmapi_bnc read operation 412 is illustrated in FIG. 15B. The
vnode operations 58a, 586 and 58¢ in the behavior chain
illustrated in FIG. 4A are executed by first calling 414 the next
read operation, i.e., dsvn inode 565 and vnode operations 585.
Normally, the next call would be to behavior 54¢ which
includes XFS inode 56¢ and vnode operations 58c. Each
behavior layer passes the operation on to the next behavior
layer, with each layer doing it part of the I/O operation.

When a filesystem is DMAPI-enabled, as illustrated in
FIGS. 4A and 4B, it can take a relatively long time to resolve
DMAPI requests. Since the behavior head 53 of vnode 42 is
locked 406 during the example read operation illustrated in
FIG. 15A, conversion of vnode 42, and relocation of the
filesystem, could be held off for an unacceptably long time.
During this time, the thread is waiting in the DMAPI queue in
Queue DMAPI Event 136 (FIG. 7). Please note that in the
description above, Queue DMAPI Event 136 is reached via
Send DMAPI Event 132, but Send DMAPI Event 132 could
be entered via routes other than the one shown in FIG. 7.

As discussed above with respect to FIG. 13, KORE beings
with Source Prepare 302 in which DM API learns that filesys-
tem server 225 is being relocated. According to the present
invention this information is used by DMAPI 90 (FIG. 6) to
wake up a thread in Queue DMAPI Event 136, by returning a
migrating error and prevent the thread from reaching Process
DMAPI Event 138. However, since relocation is supposed to
be transparent to users, this error is not returned by the user.
Instead, to avoid delaying relocation, the read operations
called 412 previously returns and the process flow illustrated
in FIG. 15B continues. If a migrating error is returned 416,
behavior head 53 is unlocked 418 during execution of
dmapi_bnc to permit vnode 42 to be converted and the thread
enters a loop waiting for conversion and relocation to com-
plete, making the lock available 420.

After conversion and relocation are completed and the lock
becomes available 420, behavior head 53 is locked 422 and
process of dmapi_bnc continues with calling 414 the next
read operation. However, since conversion is completed, the
vnode’s behavior chain will look like FIG. 4B. In the scenario
described above, the thread is executing vnode operations 58a
when the next read operation is called 414 and now behavior
584 (FIG. 4B) will be called 414 rather than behavior 585
(FIG. 4A) and the thread will move to Queue DMAPI Event
136 in FIG. 7. After all operations are completed, behavior
head 53 is unlocked 424 with the chain of behaviors for viode
42 illustrated in FIG. 4A converted to the chain of behaviors
illustrated in FIG. 4B. A similar process is performed on
threads in a client node which becomes the server node to
change from the behavior chain illustrated in FIG. 4B to the
behavior chain illustrated in FIG. 4A.

The stages of the relocation process are illustrated in FIGS.
14A-14H. As illustrated in FIG. 14A, during normal opera-
tion the metadata clients (MDCs) 44a and 44c¢ at nodes 22a
and 22¢ send token requests to metadata server (MDS) 485 on
node 225. When a relocation request is received, metadata
server 485 sends a message to node 22¢ to create a prototype
metadata server 48c¢ as illustrated in FIG. 14B. A new meta-
data client object is created on node 225, as illustrated in FIG.
14C, but initially messages to the prototype metadata server
48c¢ are blocked. Next, all of the metadata clients 44a are
instructed to detarget messages for the old metadata server
48b, as illustrated in FIG. 14D. Then, as illustrated in FIG.
14E, the new metadata server 48c¢ is instantiated and is ready
to process the messages from the clients, so the old metadata
server 48b instructs all clients to retarget messages to the new

10

15

20

25

30

35

40

45

50

55

60

65

18
metadata server 48¢, as illustrated in F1G. 14F. Finally, the old
metadata server 485 node 224 is shut down as illustrated in
FIG. 14G and the metadata client 44c¢ is shut down on node
22c¢ as illustrated in FIG. 14H. As indicated in FIG. 3, the
token client 46¢ continues to provide local access by process-
ing tokens for applications on node 22c, as part of the meta-
data server 48c.
Interruptible Token Acquisition

Preferably interruptible token acquisition is used to enable
recovery and relocation in several ways: (1) threads process-
ing messages from failed nodes that are waiting for the token
state to stabilize are sent an interrupt to be terminated to allow
recovery to begin; (2) threads processing messages from
failed nodes which may have initiated a token recall and are
waiting for the tokens to come back are interrupted; (3)
threads that are attempting to lend tokens which are waiting
for the token state to stabilize and are blocking recovery/
relocation are interrupted; and (4) threads that are waiting for
the token state to stabilize in a filesystem that has been forced
offline due to error are interrupted early. Threads waiting for
the token state to stabilize first call a function to determine if
they are allowed to wait, i.e. none of the factors above apply,
then go to sleep until some other thread signals a change in
token state.

To interrupt, CORPSE and KORE each wake all sleeping
threads. These threads loop, check if the token state has
changed and if not attempt to go back to sleep. This time, one
of'the factors above may apply and if so a thread discovering
it returns immediately with an “early” status. This tells the
upper level token code to stop trying to acquire, lend, etc. and
to return immediately with whatever partial results are avail-
able. This requires processes calling token functions to be
prepared for partial results. In the token acquisition case, the
calling process must be prepared to not get the token(s)
requested and to be unable to perform the intended operation.
In the token recall case, this means the thread will have to
leave the token server data structure in a partially recalled
state. This transitory state is exited when the last of the recalls
comes in, and the thread returning the last recalled token
clears the state. In lending cases, the thread will return early,
potentially without all tokens desired for lending.

The many features and advantages of the invention are
apparent from the detailed specification and, thus, it is
intended by the appended claims to cover all such features
and advantages of the invention that fall within the true spirit
and scope of the invention. Further, since numerous modifi-
cations and changes will readily occur to those skilled in the
art, it is not desired to limit the invention to the exact con-
struction and operation illustrated and described, and accord-
ingly all suitable modifications and equivalents may be
resorted to, falling within the scope of the invention.

What is claimed is:
1. A method of executing one or more operations on virtual
metadata, comprising:

initiating input/output operations;

locking virtual metadata associated with the input/output
operations, wherein the locking of the virtual metadata
associated with the input/output operations corresponds
to the locking of a behavior head, the behavior head links
to a first chain of behaviors, the locking of the behavior
head prevents the first chain of behaviors from changing,
and the first chain of behaviors include a vnode opera-
tion that performs a file system independent operation
on a file and an inode operation that includes file system
specific information;

US 9,275,058 B2

19

after locking the virtual metadata, performing at least one
sub-operation of the input/output operations in accor-
dance with the locked virtual metadata;
before completing the input/output operations in accor-
dance with the locked virtual metadata, identifying that
the virtual metadata is to be relocated to a new server;

releasing the lock on the virtual metadata in response to an
indication that the virtual metadata is to be relocated to
a new server, during the execution of the input/output
operations in accordance with the locked virtual meta-
data, wherein the releasing of the lock on the virtual
metadata corresponds to unlocking the lock on the
behavior head and the unlocking of the lock on the
behavior head initiates a change from the first chain of
behaviors to a second chain of behaviors;

forming the virtual metadata as a private data chain;

locking a pointer to the private data chain;

migrating the virtual metadata to the new server; and

releasing the lock on the pointer to the private data chain.

2. The method of claim 1, further comprising halting per-
formance of the input/output operations in accordance with
the locked virtual metadata.

3. The method of claim 2, further comprising locking the
virtual metadata upon completing the migration of the virtual
metadata to the new server.

4. The method of claim 3, further comprising resuming
performance of the input/output operations on the locked
virtual metadata on the new server.

5. The method of claim 4, further comprising unlocking the
virtual metadata upon completion of the input/output opera-
tions in accordance with the virtual metadata.

6. The method of claim 4, wherein at least one of the
input/output operations is not performed as a result of the
migration of the virtual metadata.

7. A non-transitory computer readable storage medium
including code for executing one or more operations on vir-
tual metadata, the code operable to cause one or more pro-
cessors to:

initiate input/output operations;

lock virtual metadata associated with the input/output

operations, wherein the locking of the virtual metadata
associated with the input/output operations corresponds
to the locking of a behavior head, the behavior head links
to a first chain of behaviors, the locking of the behavior
head prevents the first chain of behaviors from changing,
and the first chain of behaviors include a vnode opera-
tion that performs a file system independent operation
on a file and an inode operation that includes file system
specific information;

after locking the virtual metadata, perform at least one

sub-operation of the input/output operations in accor-
dance with the locked virtual metadata;
before completing the input/output operations in accor-
dance with the locked virtual metadata, identify that the
virtual metadata is to be relocated to a new server;

release the lock on the virtual metadata in response to an
indication that the virtual metadata is to be relocated to
a new server, during the execution of the input/output
operations in accordance with the locked virtual meta-
data, wherein the releasing of the lock on the virtual
metadata corresponds to unlocking the lock on the
behavior head and the unlocking of the lock on the
behavior head initiates a change from the first chain of
behaviors to a second chain of behaviors;

30

35

40

45

55

65

20

form the virtual metadata as a private data chain;

lock a pointer to the private data chain;

migrate the virtual metadata to the new server; and

release the lock on the pointer to the private data chain.

8. The non-transitory computer readable storage medium
of claim 7, the code further operable to halt performance of
the input/output operations in accordance with the locked
virtual metadata.

9. The non-transitory computer readable storage medium
of claim 8, the code further operable to lock the virtual meta-
data upon completing the migration of the virtual metadata to
the new server.

10. The non-transitory computer readable storage medium
of claim 9, the code further operable to resume performance
of the input/output operations in accordance with the locked
virtual metadata on the new server.

11. The non-transitory computer readable storage medium
of claim 10, the code further operable to unlock the virtual
metadata upon completion of the input/output operations in
accordance with the virtual metadata.

12. The non-transitory computer readable storage medium
of claim 10, wherein at least one of the input/output opera-
tions is not performed as a result of the migration of the virtual
metadata.

13. A system for executing one or more operations on
virtual metadata, comprising:

a plurality of storage devices coupled to a storage area
network, the plurality of storage devices collectively
storing at least one file;

at least one metadata client node; and

at least one metadata server node coupled to said storage
area network,
wherein the metadata server node:
initiates input/output operations,
locks virtual metadata associated with the input/output

operations,
wherein the locking of the virtual metadata associated with
the input/output operations corresponds to the locking of
a behavior head, the behavior head links to a first chain
of behaviors, the locking of the behavior head prevents
the first chain of behaviors from changing, and the first
chain of behaviors include a vnode operation that per-
forms a file system independent operation on a file and
an inode operation that includes file system specific
information;
after locking the virtual metadata, performs at least one
sub-operation of the input/output operations in accor-
dance with the locked virtual metadata,

before completing the input/output operations in accor-
dance with the locked virtual metadata, identifies that
the virtual metadata is to be relocated to a new server,

releases the lock on the virtual metadata in response to
an indication that the virtual metadata is to be relo-
cated to a new server, during the execution of the
input/output operations in accordance with the locked
virtual metadata, wherein the releasing of the lock on
the virtual metadata corresponds to unlocking the
lock on the behavior head and the unlocking of the
lock on the behavior head initiates a change from the
first chain of behaviors to a second chain of behaviors;

forms the virtual metadata as a private data chain;

locks a pointer to the private data chain;

migrates the virtual metadata to the new server; and

releases the lock on the pointer to the private data chain.

14. The system of claim 13, the metadata data server is
further operable to halt performance of the input/output
operations in accordance with the locked virtual metadata.

US 9,275,058 B2
21

15. The system of claim 14, the metadata server further is
operable to lock the virtual metadata upon completing the
migration of the virtual metadata to the new server.

16. The system of claim 15, the metadata server is further
operable to resume performance of the input/output opera- 5
tions on the locked virtual metadata on the new server,
wherein certain input/output operations are not performed as
a result of the migration of the virtual metadata.

17. The system of claim 16, the metadata server is further
operable to unlock the virtual metadata upon completion of 10
the input/output operations in accordance with the virtual
metadata.

22

